Фото: Flickr.

Оригинал материала опубликован опубликован в интернет-журнале «Власть». Автор материала — PhD-молекулярный биолог и вирусолог, научный популяризатор Асель Мусабекова.

Редакция «Власти» уведомляет о том, что автором статьи движет только научный интерес и это беспристрастный взгляд на несколько главных мировых разработок.

На прошлой неделе Владимир Путин заявил о первой в мире зарегистрированной вакцине от COVID-19. На следующий день президент Казахстана Касым-Жомарт Токаев поздравил с этим событием своего российского коллегу и объявил о начале переговоров по закупу российской вакцины.

Президент Кыргызстана Сооронбай Жээнбеков тоже не остался в стороне и поздравил российских исследователей. Он признался, что ждал эту новость и выразил надежду на «эффективную борьбу с коронавирусом».

Сообщения о вакцине, начиная с её названия — «Спутник V», довольно политизированы. Меня, как ученого, беспокоит, что в этой технологической гонке голос ученых практически не слышен. Поэтому я и мои коллеги-биологи подготовили для вас материал о научном взгляде на вакцины от COVID-19: о разных типах вакцин, об основных на сегодняшний день кандидатах и об этапах клинических исследований.

Итак, по версии Всемирной Организации Здравоохранения на 13 августа 2020 года 29 кандидатов на вакцину проходят клинические испытания и 138 находятся на стадии доклинических исследований — исследования ведутся на клетках и лабораторных животных. Две вакцины были зарегистрированы: китайская CanSinoVac, которая была одобрена еще 25 июня для ограниченного использования в течение одного года для китайских военнослужащих, и знакомая нам российская вакцина Гам-КОВИД-Вак (или «Спутник V»), разработанная Национальным исследовательским центром эпидемиологии и микробиологии имени Н. Ф. Гамалеи.

Обе эти вакцины, наряду с разработкой университета Оксфорда (совместно с шведско-британской компанией AstroZeneca), являются так называемыми векторными вакцинами. Чтобы понять их принцип работы, давайте сначала разберемся, какие бывают вакцины:

1. Живые аттенуированные (или ослабленные): вирус выращивается в клетках в лаборатории, через множество поколений путем накопления мутаций, он ослабевает и используется в качестве вакцины. Несмотря на то, что несколько исследовательских групп проводят доклинические исследования живой вакцины от COVID-19, надежды на этот тип вакцины небольшие, поскольку процесс ослабления вируса долгий, метод не позволяет одновременное производство большого количества вакцины, и всегда присутствует (хоть и небольшой) риск заражения от вакцинного вируса.

2. Инактивированные (или убитые) — вирус обработан термически или химическим агентом (например, формальдегидом), и таким образом, он «убит», то есть не вирулентен. Среди кандидатов, находящихся на III стадии клинических исследований, есть три инактивированные вакцины: все они разработаны в Китае (Уханьский институт биопродуктов, Пекинский институт биопродуктов и компания SinoVac).

3. Субъединичные (в том числе рекомбинантные) — вакцины, состоящие из части вируса, в большинстве случаев — белка на поверхности вируса. Рекомбинантные вакцины из очищенного компонента вируса являются одними из самых безопасных с точки зрения побочных действий. Одним из примеров такого кандидата-вакцины от COVID-19 является разработка австралийской компании Vaхine, которая сотрудничает с казахстанскими учеными, об этом мы подробнее расскажем ниже.

4. Векторные — вакцины на основе вектора — другого вируса (например, аденовируса — возбудителя обычной простуды), который был модифицирован так, что он может проникнуть в клетку, но не может размножаться. Этот вектор — своего рода каркас, в который вставляется генетический код (рецепт) для производства белка нашего вируса, от которого мы хотим защититься.

5. РНК-вакцины — относительно новый тип вакцин. На данный момент зарегистрированных РНК-вакцин от каких-либо инфекций не существует. Эпидемия COVID-19 дала огромный толчок развитию РНК-вакцин. Их мы обсудим подробнее, на примере двух разработок — Moderna и Biontech.

Существуют и другие типы, но в рамках вакцины от COVID-19 мы на этом остановимся.

Как проверяются вакцины? Существует несколько этапов испытаний.

Доклинические исследования: исследования на клетках и лабораторных животных, которые доказывают предварительную безопасность и эффективность вакцины.

Фото: Flickr.

Клинические исследования:

I фаза — БЕЗОПАСНОСТЬ. Вакцина вводится небольшому количеству людей — до 100 человек для проверки безопасности и определения дозировки. Также можно сделать предварительные выводы об иммуногенности вакцины.

II фаза — РАСШИРЕННЫЕ ИССЛЕДОВАНИЯ ПО БЕЗОПАСНОСТИ. Вакцина вводится сотням людей, включая таргет группы (например, дети и пожилые). В итоге мы получаем более детальные сведения о безопасности, частично об эффективности вакцины для разных групп населения.

III фаза — ЭФФЕКТИВНОСТЬ. В третьей фазе участвуют несколько тысяч добровольцев из разных групп населения, действие вакцины сравнивается с плацебо. Такие обширные исследования позволяют проверить шанс возникновения более редких побочных действий. На основании третьей фазы мы можем сделать вывод, безопасна ли вакцина и защищает ли она на самом деле от инфекции.

Затем идет процесс официальной регистрации, с момента которой вакцина переходит в IV фазу исследований —  мониторинг эффективности и побочных действий после утверждения. Важно уточнить, что мировое сообщество приняло решение о том, что во время пандемии возможен ускоренный процесс тестирования и регистрации, к примеру, многие исследовательские группы комбинируют I и II фазы. В процессе регистрации тоже возможны упрощения. Но здесь крайне важно не идти на поводу политической повестки и установить четкие границы научной этики.


Допуск к массовому использованию вакцины, которая недостаточно хорошо проверена на безопасность — во-первых, неэтичен, и во-вторых, подрывает доверие к вакцинации вообще, что на самом деле очень опасно, особенно в Казахстане.


Что нужно учитывать при разработке вакцины против SARS-CoV-2?

Вирус — это генетическая информация в упаковке из белка и (иногда) липидов. В случае с коронавирусами, генетическая информация представлена одноцепочной РНК, а упаковка отличается присутствием так называемых белков-шипов, из-за формы которых мы и получили название вируса.

С 4 штаммами коронавируса мы знакомы: это частая причина ОРВИ в простудный сезон. Также коронавирусы были причиной атипичной пневмонии в 2002-2003 годах, и ближневосточного респираторного синдрома MERS 2012-2013. Отличие SARS-CoV-2, вируса, который вызвал эпидемию COVID-19, состоит в том, что он отлично адаптировался для заражения не только клеток легких, но и многих других органов и тканей.

Как это происходит? Белки-шипы эффективно присоединяются к человеческому рецептору АСЕ2, который находится на поверхности многих типов клеток. «Обновленная» версия коронавируса справляется с этой задачей примерно в 1000 раз лучше, чем вирус атипичной пневмонии.

Важно отметить, что вакцина против атипичной пневмонии до сих пор не была создана. Одна из причин — хитрая адаптация некоторых групп вирусов и/или системная ошибка нашего организма: весьма загадочное явление под названием антитело-зависимое усиление.

Мы знаем, что в идеале антитела, которые созданы нашей иммунной системой в ответ на сам вирус или в результате вакцинации, должны защищать нас от инфекции. Золотой стандарт — это так называемые нейтрализующие антитела — то, что мы в идеале хотим получить в результате вакцинации. Такие антитела свяжутся с белками на поверхности вируса и будут препятствовать его проникновению в клетку. Бывают также антитела, которые только частично связываются с вирусом, и вместо прямой защиты запускают другие процессы иммунной системы, которые уже косвенно борются с вирусом.


Но в случае некоторых вирусов, к которым относятся и коронавирусы, вирус, наоборот, использует такие антитела, чтобы более успешно заселить клетки. Это значит, что вакцина некоторых больных, возможно, не только не защитит, но и поможет вирусу инфицировать больше клеток!


Этот феномен помешал созданию вакцины и против других групп вирусов, например вируса RSV, возбудителя бронхиолита у грудничков.

В случае с вирусом атипичной пневмонии, эксперименты на мышах показали, что у некоторых мышей (в особенности пожилых), после вакцинации заражение вирусом привело к более тяжелым последствиям и серьёзным нарушениям легких. Уже появились некоторые данные, которые позволяют нам предположить, что именно антитело-зависимое усиление может являться причиной огромного количества осложнений SARS-CoV-2, ввиду гипервоспаления.

Мы приходим к выводу, что феномен антитело-зависимого усиления — это один из факторов, который должен был учтен при проверке безопасности вакцины.

Фото: Unsplash.

Второй важный фактор, о котором обязаны отчитаться разработчики вакцин — измерение иммунного ответа на вакцину. Мы в точности не знаем механизм эффективного иммунного ответа против коронавируса, но уже сейчас становится понятно, что помогают нам не только антитела, но и так называемый Т-клеточный иммунитет. И если антитела связывают сам вирус и не пускают его в клетку, то Т-клеточный иммунитет нападает на зараженные вирусом клетки. Поэтому мы можем говорить об эффективной вакцине от COVID-19, если в идеале она не только повышает титр антител, но и ведет к появлению специфических Т-клеток. Измерить количество таких клеток можно, так как на их поверхности есть определенные рецепторы — датчики.

К сожалению, из обзора СМИ за прошлую неделю, становится ясно, что многие политики, и в том числе главы государств, путают титр антител и измерение Т-клеточного иммунитета, что само по себе не страшно, но возможно, что публично высказываться на такие темы все-таки должны специалисты или люди, прошедшие ликбез.

И третье уточнение — желательно, чтобы вакцина была перекрестной, то есть защищала от предположительных мутаций и от других похожих штаммов коронавируса.

Теперь, после введения в базовые понятия, мы можем приступать к обсуждению самых главных кандидатов на вакцину от COVID-19.

Российская вакцина Гам-КОВИД-Вак, известная западным СМИ как «Спутник V» —векторная вакцина, которая будет ставиться в два укола. Принцип вакцины такой: в качестве каркаса используется человеческий аденовирус (возбудитель обычной простуды), в который вставлен «рецепт» шиповидного белка SARS-coV-2. Первый укол — вакцина на основе аденовируса 26-го серотипа, второй — на основе аденовируса 5-го серотипа. Аденовирус выступает в роли доставщика генетического материала. Кроме того, он был изменен так, что не может размножаться, но может разово проникать в клетку и производить вирусный белок. В чем проблема с векторными вакцинами?

Во-первых, аденовирусы — возбудители простуды, а значит, у нас у всех, скорее всего, присутствует иммунитет против какого-то из аденовирусов. Серотипы, которые используются в данном случае, являются достаточно редкими, что, возможно, поможет справиться с этой проблемой. Вакцина ставится в два этапа для того, чтобы усилить иммунный ответ.

Что мы знаем на данный момент о Гам-КОВИД-Вак? На самом деле, совсем немного. Опубликованы некоторые результаты первой фазы исследований, в которых участвовали 38 человек, из них только 20 была введена вакцина в два этапа (как сейчас указано в инструкции).

Исходя из такого маленького количества участников, невозможно делать абсолютно никакие выводы о безопасности и эффективности вакцины. Для научного сообщества это скорее один из кандидатов, но пока не вакцина, так как III фаза испытаний только началась, и будет продолжаться до января. Вакцина пока не показана для использования на детях и пожилых людях, так как эти группы населения еще не были протестированы. Деталей протокола третьей фазы тоже невозможно найти. Судя по всему, исходя из объявлений, пока исследования планируются только в Москве. Инструкция к препарату уже доступна, в ней указаны стандартные противопоказания и возможные побочные эффекты.

Фото: Unsplash.

Наиболее похожий кандидат, который достаточно близок к завершению исследований — разработка Оксфордского университета совместно с компанией AstroZeneca. Главное отличие этой вакцины от российской, это тот самый вектор — в данном случае тоже используется аденовирус, но тот, что обычно заражает шимпанзе, а не человека. Это позволяет частично избежать проблему наличия иммунитета на вакцину.

Такой «каркас» для вакцины уже использовался Оксфордской группой для создания вакцины против Эболы и MERS. 20 июля были опубликованы результаты объединенной I/II фазы исследований, основной целью которых была проверка на безопасность и частично на эффективность вакцины. Испытания прошли в нескольких городах Великобритании на 1077 людях. Предварительно было показано, что вакцина приводит к появлению специфических антител и Т-клеточного иммунитета. Сейчас началась III фаза исследований в Бразилии и ЮАР, цель которой — расширенная проверка на безопасность и эффективность, количество участников на данный момент — 8000 человек. Кроме того, Оксфордская вакцина — одна инъекция без второго этапа, что также является большим преимуществом в плане организации вакцинации. Другое дело, будет ли она эффективна — на этот вопрос мы сможем ответить после окончания III фазы испытаний.

Самые инновационные из кандидатов, пожалуй, касаются разработки РНК-вакцины. Я попросила своих коллег-ученых рассказать подробнее об их фаворитах в технологической гонке.

Юрий Ким, PhD докторант Университета Джорджа Мэйсона (США), вирусолог:

— Корпорация Moderna недавно запустила III фазу клинических испытаний. В ней будут участвовать 30 000 добровольцев — 15 000 получат плацебо (пустышку), 15 000 — кандидата на вакцину. Это так называемое двойное слепое исследование, то есть ни испытуемый, ни исследователь не знают в процессе исследования, что получает тот или иной человек. Особенность этого клинического испытания состоит в том, что это РНК вакцина, эта технология сейчас в тренде.

Что такое РНК? Если вспомнить механизм передачи информации в клетках, наша генетическая информация, которая хранится в ДНК, переходит в РНК путем транскрипции, а затем РНК садится на рибосому и начинается синтез белков. Вакцина от Moderna — это РНК, кодирующая стабилизированный вариант шиповидного белка коронавируса SARS-CoV-2. Здесь используются самые последние технологии. В самом составе РНК урацилы заменены на псевдо-урацилы, это позволяет фрагменту РНК проникать в клетку, но при этом не инициировать иммунный ответ на РНК. Таким образом, уменьшается вероятность побочных действий, а иммунитет формируется только в ответ на сам белок.

Одно из преимуществ РНК-вакцины — то, что есть возможность очень быстро ее произвести. Компания Moderna начала разработку вакцины сразу после публикации генома китайскими учеными в январе. Через 45 дней у них уже были готовы первые прототипы. Это стало возможным из-за самого процесса производства — по сути в основе химический синтез. Сначала создается ДНК, потом с помощью метода обратной транскрипции синтезируется РНК, она затем модифицируется и пакуется в липидные наночастицы. Эти наночастицы дополнительно модифицируются для того, чтобы они были поглощены определенными видами клеток. Клетки, в которые попали эти наночастицы, начинают производить вирусный белок-шип. Белок подхватывается клетками, которые презентуют его иммунной системе, а дальше механизм схож с обычными вакцинами.

Преимущества: быстрое производство, которое можно масштабировать. Нет нужды выращивать вирусы в огромных количествах, не нужна лаборатория повышенной биобезопасности, по сути это лего из биологических ингредиентов — современные технологии позволяют значительно ускорить производство без компромисса с безопасностью. Также разработчики учли так называемое «антитело-зависимое усиление», когда после вакцины вырабатываются антитела не самого лучшего качества, которые только помогают вирусу. А именно, они заменили несколько аминокислот в белке-шипе и стабилизировали его таким образом, чтобы он вызывал нужный иммунный ответ, то есть производил нейтрализующие антитела.


Я в свою очередь тоже пытался записаться на данные клинические испытания, подал заявку, но, к сожалению, ее отклонили.


Очень много желающих пройти испытания, видимо, я не являюсь приоритетным по некоторым параметрам, так как для III фазы им нужны были люди, для которых вирус представляет бОльшую опасность.

Фото: Flickr.

Мухтар Садыков, доктор медицины (Назарбаев Университет), PhD докторант университета KAUST (Саудовская Аравия), молекулярный биолог:

— Я бы хотел добавить, что по всей вероятности пандемия COVID-19 подарит человечеству первую выпущенную РНК вакцину, так как до этого они были исследованы только в лаборатории. И это очень круто, так как на самом деле у такого рода вакцин очень много преимуществ. И это не только, как уже упомянул Юрий, из-за относительной дешевизны и легкости производства больших партий. К тому же, процесс производства РНК вакцин не использует клетки животных, бактерии или дрожжи, следовательно, в итоге мы получаем продукт высокой чистоты. Еще одно явное преимущество для таких вакцин не требуется добавление адъюванта — вещества, которое повышает иммуногенность, которое обычно необходимо добавлять в инактивированные и живые вакцины.

Aсель Mусабекова: На какого кандидата ты возлагаешь надежды?

Мухтар Садыков: Я бы хотел рассказать о главном конкуренте Модерны — кандидате немецкой компании Biontech в партнерстве с Pfizer. Аналогично, используется последовательность РНК, кодирующая белок-шип, а точнее его часть. Вообще в процессе создания вакцины Biontech подкупает открытость процесса. Достаточно много информации о том, как проходят исследования.

Главное отличие от Модерны — возможность использования малого количества РНК для одной дозы вакцины. Компания Biontech ставит целью обеспечить 1 млрд доз вакцин достаточно быстро. Этот аспект очень важен, так на данный момент у развивающихся стран нет как такового выбора вакцины — страны встают очередь и «занимают» количество доз заранее. Аналогично Модерне, проект развивался очень быстро, начиная с публикации первого генома вируса в январе и до обширных исследований на более 20 000 человек, которые начались 27 июля.

Мы ясно видим и самих разработчиков это известные, активно публикующиеся ученые. Мне нравится детальное описание измерения самых разных параметров иммунной системы у испытуемых, включая цитокины (врожденный иммунитет) и Т-клеточный иммунитет. По результату I/II фазы у вакцины достаточно хороший профиль безопасности. Самая главная особенность вакцины Biontech — яркий пример создания вакцины новой формации — максимальная открытость и технологичность.

Что касается сложности иммунного ответа против COVID-19, недавно вышли две статьи в самых цитируемых журналах Nature и Science, что у людей, которые раньше болели коронавирусами (4 штамма коронавируса — возбудители ОРВИ в простудный сезон), были обнаружены Т-клетки памяти. В этих статьях ученые определили конкретные пептиды (цепочки) белка-шипа и других вирусных белков, которые привели к формированию долгосрочного Т-клеточного иммунитета. Остается только ждать результатов подобных исследований, нo более продолжительных по времени, чтобы понять, насколько долгосрочен этот иммунный ответ, и использовать эти знания в разработке вакцин».

Фото: Unsplash.

Как участвуют в разработке вакцины от COVID-19 вакцинологи Казахстана?

Профессор Кайсар Табынов, директор Международного центра вакцинологии КазНАУ, стал первым испытуемым в Казахстане. Речь идет о субъединичной вакцине под торговым названием COVAX-19 производства Vaxine Pty Ltd (Аделаида, Австралия). Вакцина успешно прошла I фазу испытаний, и сейчас ведутся переговоры по проведению расширенных исследований. Согласившись на клиническое испытание, ученый не только хочет защитить себя от болезни, но и привлечь внимание Министерства задравоохранения Казахстана к возможности сотрудничества с австралийской компанией. По его словам, чиновники заняты переговорами с китайской компанией SinoVac по обеспечению казахстанцев китайской инактивированной вакциной. Будем надеяться, что усилия Международного центра вакцинологии будут оправданы и их исследования приведут к развитию базы для проведения клинических исследований в нашей стране.

Еще одна организация из Казахстана, которая участвует в разработке вакцин от COVID-19 — Научно-исследовательский институт проблем биологической безопасности Комитета науки МОН Казахстана. Она указана как разработчик на стадии доклинических исследований и в документе ВОЗ. Сообщения об их разработках, которые я нашла в СМИ, меня лично скорее обескуражили. Заявления типа «вакцина абсолютно безвредная», «…я думаю, министерство здравоохранения даст добро для массового применения», вводят в заблуждение и изначально ошибочны, так как вакцина прошла только стадию испытаний на животных. Кроме того, институт занимается разработкой 5 видов вакцин одновременно. Зачем? Абсолютно непонятно и необоснованно. Но это позволяет ученым говорить о том, что «ни одно предприятие в мире не изготавливает столько вакцин в одном месте». Иными словами, коммуникация о вакцинации — это проблема во всем мире, и наша страна не исключение. Неудивительно, что, к сожалению, повсюду наблюдается рост антипрививочного движения.

Подытожим: вакцины, которая была бы готова для массового пользования, до сих пор нет. Возможно, первые такие вакцины будут готовы в 2021 году после окончания III фазы клинических испытаний. Базовые знания об иммунологии, и, в частности, о вакцинах должны стать основой для «новой нормальности» в эпоху эпидемий. Для этого просто жизненно необходимо наладить эффективную коммуникацию между населением, госструктурами, фармкомпаниями, врачами и учеными, где решающее слово должно быть подкреплено научной доказательной базой.

Проекты по разработке вакцины от COVID-19 уже меняют тренды в науке — в моде открытость, мобильность, гибкость и высокие технологии. Самые яркие претенденты вовсе не БигФарма, а активные компании нового формата. На их фоне неповоротливость и скрытность некоторых постсоветских институтов еще больше видна.

Мы искренне надеемся на здравое принятие решений по обеспечению казахстанцев вакциной от COVID-19. То, как себя в данном случае покажет госаппарат, будет стратегически важно для развития научного сообщества нашей страны.